179 research outputs found

    Sorbed Anthracene Degradation by Sophorolipid Producing Yeasts

    Get PDF
    The organic pollutan adsorption/desorption process by microbial degradation had been less studied than metal ones. The sorption assays alone did not predict desorption, due to hysteresis, irreversibility, fixed compounds in different sites, with diverse desorption rates. Most of the studies dealt with bacteria rather than filamentous fungi and yeasts. So, our aims were to isolate yeasts from polluted sediments, to quantify its potential to uptake anthracene (An) and to evaluate the bioavailability by a desorption model. Yeasts were isolated from hydrocarbon-polluted samples, 40-isolates grew in anthracene-plates. Molecular characterization was achieved by sequence analysis of the ITS1-5.8S rRNA-ITS4 and 26S rRNA regions; morphological and physiological determination were also done. Candida parasilopsis, Pichia anomala and Rhodothorula mucilaginosa were the prevalent yeasts. An-degradation was assessed in soil-systems with 0, 50, 100, 150, 200 and 250 µg An/l, 3 differentes sorbens types, organic carbon, organic nitrogen, PAHs, sand:silt:clay, pH and cation exchange capacity. Sophorolipids excretion were confirmed by HPLC, UV-detector with active fraction at 9.669 min (RT 9.646 min = sophorolipid-standard). A desorption model with equilibrium, nonequilibrium and nondesorption areas, was applied to explain the experimental data, An-transformation was greater in the organic liquid-phase than in the soil-sorbed ones; the desorption-coefficients and soil components were negatively correlated with the kinetic parameters. The An-release depended on the sophorolipid excretion, soil matrix and particles sizes. Desorption parameters significantly fitted the yeast uptake, with R2 = 0.97, R2 = 0.90 and R2 = 0.97 for C. parasilopsis, P. anomala and R. mucilaginosa, respectively

    Comparison of Faecal versus Rumen Inocula for the Estimation of NDF Digestibility

    Get PDF
    Cow faeces have been investigated as alternative inoculum to replace rumen fluid to determine neutral detergent fibre (NDF) digestibility (NDFD). Aims of this study were to estimate: (1) the NDFD (48 h) of feed ingredients using a rumen inoculum in comparison with faecal inocula from cows fed diets with different forage basis; (2) the undigestible NDF (uNDF) at 240 and 360 h with ruminal fluid and faecal inocula from lactating cows fed two different diets. At 48 h incubation, the NDFD was affected both by feed and type of inoculum (p < 0.01) and by their interaction (p = 0.03). Overall, the mean NDFD was higher for rumen inoculum than for faecal inocula (585 vs. 389 g/kg NDF, p < 0.05), and faecal inoculum obtained from cows fed hay-based diets gave lower NDFD than those from cows fed maize silage (367 vs. 440 g/kg, p < 0.05). At long incubation times, the average uNDF was affected by substrate, inoculum and incubation time (p < 0.01), but not by their interactions. For each inoculum, significantly lower values were obtained at 360 than at 240 h. Regressions between uNDF with rumen and with the tested faecal inocula resulted in r2 65 0.98. Despite the differences at 48 h, the uNDF showed that faecal inoculum could replace rumen fluid at longer incubation times

    Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan

    Get PDF
    Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called "no man's land" between pediatric and adult services. In the last 10\u2009years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients' needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes

    MTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex

    Get PDF
    Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney-specific inactivation of either Pkd1 or Tsc1 using an identical Cre (KspCre) results in aggressive or very mild PKD, respectively. Unexpectedly, we find that mTORC1 negatively regulates the biogenesis of polycystin-1 (PC-1) and trafficking of the PC-1/2 complex to cilia. Genetic interaction studies reveal an important role for PC-1 downregulation by mTORC1 in the cystogenesis of Tsc1 mutants. Our data potentially explain the severe renal manifestations of the TSC/PKD contiguous gene syndrome and open new perspectives for the use of mTOR inhibitors in autosomal dominant PKD caused by hypomorphic or missense PKD1 mutations

    Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer

    Get PDF
    Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments
    • …
    corecore